
(Refer Slide Time: 14:07)

Here is a part of the delete function. First of all, if we were looking for v and then we do

not find it. So, sorry in this code, it is called x. So, this is deleting value x if you want. If

we say that the list is empty, then obviously, we cannot delete it because delete says if

there is a value of this... node with value x then delete it. If it is empty we do nothing;

otherwise if this self dot value is x the first node is to be deleted. Then if there is only 1

node, then we are going from x to empty, this is easy. If there is no next node right, if we

have only a singleton then we just set the value to be none and we are done.

This is the easy case, but if it is not the first node, I mean, it is the first node and this is

not also the only node in the list then what we do is we do what we said before. We copy

the next value. We pretend that we are deleting the second node. So, we copy the second

value into the first value and we delete the next node by bypassing. This is that bypass.

This is part of the function; this is the tricky part which is how do you delete the first

value. If it is only 1 value, make it none; if not, bypass the second node by copying the

second node to the first node.

521



(Refer Slide Time: 15:24)

And if this is not the case then we just walk down and find the first x to delete. We start

as… this is like our iterative append. We start pointing to self and so long as we have not

reached the end of the list if we find the next value is x and then we bypass it and if you

reach the end of the list, we have not found it, we do nothing, we just have to return. In

this case it is not like append where when we reached the end of the list we have to

append here, if we do not find a next by the time we reach the end of the list, then there’s

nothing to be done.

522



(Refer Slide Time: 15:54)

So, just for completeness, here is the full function, this was the first slide we saw which

is the case when the value to be deleted is in the first node and this is the second case

when we walk down the list looking for the first x to delete.

(Refer Slide Time: 16:09)

Just like append can be done both iteratively and recursively, we can also delete

523



recursively which is if it is the first node we handle it in a special way by moving the

second value to the first and bypassing it as we did before. Otherwise we just point to the

next node and ask the next node, the list starting at the next node, what is normally called

the tail of the list, to delete v from itself. The only thing that we have to remember in this

is that if we reach the end of the list and we delete the last node. Supposing it turns out,

the value v to be deleted is here. So, we come here and then we delete it. What we will

end up with is finding a value none, because when we delete it from here, it is as though

we take a singleton element v and delete v from a singleton and will create none none.

So, this is the base case, if we are recursively deleting as we go whenever we delete from

the last node, it is as though we are deleting from a singleton list with value v and we are

not allowed to create a value none at the end.

We have to just check when we create the next thing if we delete the next value and it is

value becomes none then we should remove that item from the list. So, this is the only

tricky thing that when we do a recursive delete you have to be careful after we delete you

have to check what is happening.

(Refer Slide Time: 17:32)

This part is the earlier part and now this is recursive part. So, recursive part is fairly

straight forward. So the first part is when we delete the first element from a list, but the

524



recursive part we check if self dot next is equal to none then we delete recursively that is

fine. So, this is the delete call.

Now, after the delete is completed we check whether the next value has actually become

none. Have we actually ended up at the last node and deleted the last node? If so, then

we remove it, this we can either write self dot next is equal to self dot next dot next or we

could even just write self dot next is equal to none which is probably a cleaner way of

saying it because it can only happen at the last node. So, you make this node the last

node. Remember if the next node is none, it’s next must also be none.

This has the same effect: self dot next dot next must be none. So, we can also directly

assign self dot next is equal none and it would basically make this node the last node.

The only thing to remember about recursive delete is when we reach the end of the list

and we have deleted this list this becomes none then we should terminate the list here

and remove this node.

(Refer Slide Time: 18:34)

Finally let us write a function to print out a list. So, that we can keep track of what is

going on. We will print out a list by just constructing a python list out of it and then using

str on the python list. So, we want to create a python list from the values in our list. So,

525



we first initialize our list that we are going to produce for the empty list.

If our list, the node itself has nothing then we return the string value of the empty list,

otherwise we walk down the list and we keep adding each value using the append

function. So, we keep appending each value that we have stored in each node building up

a python list in this process and finally, we return whatever is the string value of that list.

Let us look at some python code and see how this actually works.

(Refer Slide Time: 19:24)

Here we have code which exactly reflects what we did in the slides. We have chosen to

use the recursive versions for both append and delete. So, we start with this initial

initialization which sets the initial value to be none by default or otherwise v as an

argument provided.

526



(Refer Slide Time: 19:44)

Then isempty just checks whether self dot value is none, we had written a more compact

form in the slide by saying just return self dot value equal to equal to none, but we have

expanded it out as an if statement here.

(Refer Slide Time: 19:56)

Now, this is the append function. So, append just checks if the current node is empty then

527



it puts it here otherwise it creates a new node... if we have reached the last node it creates

a new node and makes the last node point to the new node, otherwise it recursively

appends. Then we have this insert function here.

(Refer Slide Time: 20:29)

This insert function: again if it is empty then it just creates a singleton list otherwise it

creates a new node and exchanges the first node and the new node. So, this particular

thing here is the place where we create this, swap the pointers so that what self points to

does not change, but rather we create a reordering of the new node and the first node. So,

the new node becomes the second node and the first node now has the value that we just

added.

528



(Refer Slide Time: 21:02)

Finally, we can come down to the recursive delete. So, the recursive delete again says

that if the list is empty then we do nothing, otherwise if the first value is to be deleted

then we have to be careful and we have to make sure we delete the second value by

actually copying the second node into the first and finally, if that is not the case then we

just recursively delete, but then when we finish the delete, we have to delete the spurious

empty node at the end of the list in case we have accidentally created it.

So, these 2 lines here just make sure that we do not leave a spurious empty node at the

end of the list. And finally, we have this str function which creates a python list from our

values and eventually returns a string representation of that list.

529



(Refer Slide Time: 21:54)

If we now run this by importing, then we could say, for instance, that l is a list with value

0 and if we say print l then we will get this representation 0, we could for instance put

this in a loop and say for i in range 1 say 11, l dot append i.

(Refer Slide Time: 22:34)

And then if we at this point print l then we get 0 to 10 as before.

530



(Refer Slide Time: 22:40)

Now we say l dot delete 4 for instance and we print l then 4 is formed and so on. If we

say l dot insert 12 and print l, then 12 will begin. So, you can check that this works.

Notice that we are getting these empty brackets, this is the returned value. So, when we

wrote this return, we wrote with the empty argument. And then we get this empty tuple,

we can just write a return with nothing and then it would not display this funnier return

value, but what is actually important is that the internal representation of our list is

correctly changing with the functions that we have written.

531


