(Refer Slide Time: 14:07)

Delete a value y.

def delete(self,x): N
if self.isempty(): in > [1
return()

v

if self.value == x: # value to delete
is in first node

if self.next == None
self.value = None
else: e

TN
self.value = self.next.value
self.next = self.next.next
return() \‘-@;P‘SS

Here is a part of the delete function. First of all, if we were looking for - then we do
not find it. So, sorry in this code, it is called x. So, this is'deleting value x if you want. If
we say that fhelist is empty, then obviously, we cannot delete it because delete says if
there is a value of fhiS.. node with value x then delete it. If it is empty we do nothing;
otherwise if this self dot value is x the first node is to be deleted. Then if there is only 1
node, then we are going from x to empty, this is easy. If there is i next node right, if we

have only a singleton then we just set the value to be none and we are done.

This is the easy case, but if it is not the first node, I mean, it is the first node and this is
not also the only node in the list then what we do is we do what we said before. . copy
the next value! We pretend that we are deleting the second node. So, we copy the second
value into the first value and we delete the next node by bypassing. This is that bypass.
This is part of the function; this is the tricky part which is how do you delete the first
value. If it is only 1 value, make it none; if not, bypass the second node by copying the

second node to the first node.

521

(Refer Slide Time: 15:24)

Delete a value v

def delete(self,x):
if self.isempty():
return()

if self.value == x: # value to delete
1s in first node

temp = self # find first x to delete i
while temp.next != None: |
if temp.next.value == x:
temp.next = temp.next.next
return()
else:
temp = temp.next

return()

And if this is not the case then we just walk down and find the first x to delete. We start
@s... this is like our iterative append. We start pointing to self and's@ long as we have not
reached the end of the list if we find the next value is x and then we bypass it and if you
reach the end of the list, we have not found it, we do nothing, we just have to return. In
this case it is not like append where when we Feached the end of the list we have to
append here, if we do not find a next By the time we reach the end of the list, then there’s

nothing to be done.

522

(Refer Slide Time: 15:54)

Delete a value v

def delete(self,x):
if self.isempty():
return()
if self.value == x: # value to delete is in first node
if self.next == None
self.value = None
else:
self.value = self.next.value
self.next = self.next.next
return(Q)

temp = self # first x to delete
while temp.next != None:
if temp.next.value == x:
temp.next = temp.next.next

return()
else:
temp = temp.next
return()

So, just for completeness, here is . full function, this was the first slide we saw which
is the case when the value to be deleted is in the first node and this is the second case

when we walk down the list looking for the first x to delete.

(Refer Slide Time: 16:09)

Delete value v, recursively

7N

» If v occurs in first node, delete as before

» Otherwise, if there is a next node, recursively
delete v from there

* If next.value == v and next.next == None,
next.value becomes None

» |f so, terminate the list here

Just like append can be done both iteratively and recursively, we can also delete

523

recursively which is if it is the first node we handle it i@ special way by moving the
second value to the first and bypassing it as we did before. Otherwise we just point to the
next node and ask the next node, the list starting at the next node, what is normally called
the tail of the list, to delete v from itself. The only thing that we have to remember in this
is that if we reach the end of the list and we delete the last - Supposing it turns out,
the value v to be [deleted’i§ here. So, we come here and then we delete it. Wihat we will
end up with is finding a value none, because when we delete it from here, it is as though
we take a singleton element v and delete v from a singleton and will create none none.
So, this is the base case, if we are recursively deleting as we go whenever we delete from
the last node, it is as though We are deleting from a singleton list with value v and we are

not allowed to create a value none at the end.

We have to just eheck when we create the next thing if we delete the next value and it is
value becomes none then we should remove that item from the list. So, this is the only
tricky thing that when we do a recursive delete you have to be careful after we delete you

have to check what is happening.

(Refer Slide Time: 17:32)

Delete value v, recursively

def deleter(self,x):
if self.isempty():

return()
Tif self.value == x: # value to delete is in first node
if self.next == None
' self.value = None
else:
| self.value = self.next.value X
t self.next = self.next.next = \r~4u
— return() /Ag/ﬂT".‘xag"
A o 15 .__\5
else: # recursive delete) T NG
if self.next != None: \
self.next.deleter(v) \
if self.next.value == None; \

self.next = self.next.next

return() Nl =

This - is the earlier part and now this is recursive part. So, recursive part is fairly

straight forward. S the first part is When'we delete the first element from a list, but the

524

recursive part we check if self dot next is equal to none then we delete recursively that is

fine. So, this is the delete call.

Now, after the delete is completed we check whether the next value has actually become
none. Have we actually ended up at the last node and deleted the last node? If 8@, then
we remove it, this we can either write self dot next is equal to self dot next dot next or we
could even just write self dot next is equal to none which is probably a cleaner way of
saying it because it can only happen at the last node. So, you make this node the last

node. Remember if the next node is none, it’s next must also be none.

This has the same effect: self dot next dot next must be none. So, we can also directly
assign self dot next is equal none and it would basically make this node the last node.
The only thing 0 remember about recursive delete is when we reach the end of the list
and we have deleted this list this becomes none then we should terminate the list here

and remove this node.

(Refer Slide Time: 18:34)

Printing out the list

def __str__(self):
selflist []

if self.value None :
return(str(selflist))

temp self

selflist.append(temp.value)

while temp.next != None:

temp temp.next .

selflist.append(temp.value)

return(str(selflist))

Finally let us write a function to print out a list. So, that we can keep track of what is
going on. We will print out a list by just constructing a python list out of it and then using

str on the python list. So, we want to create a python list ftom the values in our list. So,

525

we first initialize our list that we are going to produce for the empty list.

If our list, the node itself has nothing then we return the string value of the empty list,
otherwise we walk down the list and we keep adding each value using the append
function. So, we keep appending each value that we have stored in each node building up
a python list in this process and finally, we return whatever i§ the string value of that list.

Let us look at some python code and see how this actually works.

(Refer Slide Time: 19:24)

-UU-:----F1 list.p

Here we have code which exactly reflects what we did in the slides. We have chosen to
use the recursive versions for both append and delete. So, we start with this initial
initialization which sets the initial value to be none by default or otherwise v as an

argument provided.

526

(Refer Slide Time: 19:44)

-UU-:----F1 list.p

Then isempty just checks whether self dot value is none, we had written @ more compact
form in the slide by saying just return self dot value equal to equal to none, but we have

expanded it out as an if statement here.

(Refer Slide Time: 19:56)

append, recursive

-UU-:----F1 list.p

Now, this is the append function. So, append just checks if the current node is empty then

527

it puts it here otherwise it creates a new node... if we have reached the last node it creates
a new node and makes the last node point to the new node, otherwise it recursively

appends. Then we have this insert function here.

(Refer Slide Time: 20:29)

This msert function: again if it is empty then it just creates a singleton list otherwise it
creates a new node and exchanges the first node and the new node. So, this particular
thing here is the place where we create this, swap the pointers so that what self points to
does not change, but rather we create a reordering of the new node and the first node. So,
the new node becomes theé second node and the first node now has the value that we just

added.

528

(Refer Slide Time: 21:02)

f delete f # delete, recursive

Finally, we can come down to the recursive delete. So, the recursive delete again says
that if the list is empty then we do nothing, otherwise if the first value is to be deleted
then we have to be careful and we have t@ make sure we delete the second value by
actually ecopying the second node into the first and finally, if that is not the case then we
just recursively delete, but then when we finish the delete, we have to delete the spurious

empty node at the end of the list in case we have accidentally created it.

So, these 2 lines here just make sure that we do not leave @ spurious empty node at the
end of the list. And finally, we have this str function which creates @ python list from our

values and eventually returns @ string representation of that list.

529

(Refer Slide Time: 21:54)

If we now run this by importing, then we could say, for instance, that | is a list with value
0 and if we say print 1 then we will get this representation 0, we could for instance put

this in a loop and say for i in range 1 say 11, | dot append i.

(Refer Slide Time: 22:34)

And then if we at this point print 1 then we get 0 to 10 as before.

530

(Refer Slide Time: 22:40)

Now we say | dot delete 4 for instance and we print I then 4 is formed and so on. If we
say | dot insert 12 and print 1, then 12 will begin. So, you can check that this works.
Notice that we are getting these empty brackets, this is the returned value. So, when we
wrote this return, we wrote with the empty argument. And then we get this empty tuple,
we can just write a return with nothing and then it would not display this funnier return
value, but what is actually important is that the internal representation of our list is

correctly changing with the functions that we have written.

531

